University of Computer Studies, Yangon B.C.Sc./B.C.Tech.

CST-301	: Data and Computer Communications	First Semester			
Text book : Structured Computer Organization (6th Edition)					
	By Andrew S. Tanenbaum. Todd Austin				
Period	: 45 periods for 15 weeks (3 periods/week)				

Course Description:

Computer design fundamentals for computer technology, Von Neumann computer architecture: processor, memory and I/O. Processor organization: registers, ALU, and control. Memory organization and memory bus, I/O organization: I/O bus, memory mapped I/O. Number representations and ALU designs. Fundamentals of assembly language are used throughout to illustrate concepts. The course provides an accessible introduction to computer hardware and architecture which serve as a useful resource for all computer professionals and engineers who need an overview or introduction to computer architecture. This course takes a modern structured, layered approach to understanding computer systems.

Course Objective:

The objective of this course is to study the internal architecture/components of the computer, how they are integrated together, and the way they are controlled. This course should be preceded by an introduction in Logic and Digital Design. Topics include basic scientific concepts of how data networks function, data transferring techniques starting from hardware levels to high levels of data transferring protocols over intranetworks, and the scientific theories on which the modern digital communication technology is based.

Assessment Plan for the Course

Paper Exam: 70%
Attendance: 10%
Test/ Quiz: 10%
Assessment: 10%

Tentative Lecture Plan

No.	Chapter	Page	Period	Detail Lecture Plan
	Chapter 1 Introduction	1-27	4	Lecture + Problems
1	1.1 Structured Computer Organization	1-8	2	Detail explain about languages, levels and Virtual machine

2	1.2 Milestones in Computer Architecture	13-27		1	As	ssignment & Discussion
3	Problems	52-54		1	No	0.1,3,7
	Chapter 3 The Digital Logic Level	147-201		15		, ,
4	3.1 Gates and Boolean Algebra3.1.1 Gates3.1.2 Boolean Algebra3.1.3 Implementation of Boolean Functions3.1.4 Circuit Equivalence	147-157		2		st known ssignment & Discussion
5	3.2 Basic Digital Logic Circuits 3.2.1 Integrated Circuits 3.2.2 Combinational Circuits 3.2.3 Arithmetic Circuits 3.2.4 Clocks	158-169		2	De	etail explain
6	3.3 Memory 3.3.2 Flip-Flops 3.3.3 Registers 3.3.4 Memory Organization 3.3.5 Memory Chips	172-180		3	De	etail explain
7	3.4 CPU Chips and Buses 3.4.1 CPU Chips 3.4.2 Computer Buses 3.4.3 Bus Width	185-191		3	De	etail explain
8	3.4.4 Bus Clocking 3.4.5 Bus Arbitration	191-201		1	De	etail explain
9	3.4.6 Bus Operation Problems & Assignments	237-241		2		0.1,13,15,16,17,18,21,24,
10	Tutorial (Chapter 1 and 3)			1		,
	Chapter 4 The Micro-architecture level	243-323		17		
11	4.1 An Example Micro-architecture4.1.1 The Data Path4.1.2 Microinstructions4.1.3 Microinstruction Control: The Mic-1	243-258		4		etail explain
12.	4.2 An Example ISA: IJVM4.2.1 Stacks4.2.2 The IJVM Memory Model4.2.3 The IJVM Instruction Set4.2.4 Compiling Java to IJVM	258-267		3	De	etail explain
No.	Chapter	Pag	e	Peri	iod	Detail Lecture Plan
13	4.3 An Example Implementation4.3.1 Microinstructions and Notation4.3.2 Implementation of IJVM Using the Mic-	267-2 1	82	2		Detail explain

2

283-303

Detail explain

Mic-3 and Mic-4

To compare Mic-1. Mic-2,

4.4 Design Of The Microarchitecture Level

4.4.2 Reducing the Execution Path Length

4.4.4 A Pipelined Design; The Mic-3 4.4.5 A Seven-Stage Pipeline: The Mic-4

4.4.3 A Design with Prefetching: The Mic-2

4.4.1 Speed versus Cost

14

15	 4.5 Improving Performance 4.5.1 Cache Memory 4.5.2 Branch Prediction 4.5.3 Out of Order Execution and Register Renaming 4.5.4 Speculative Execution 	303-323	4	Detail Explain
16	Problems and Assignments Tutorial	338-341	1 1	No. 2,5,6,7,10,11
	Chapter 5 The Instruction Set	362-379	7	
17	5.3 Instruction Formats5.3.1 Design Criteria for Instruction Formats5.3.2 Expanding Opcodes	362-367	2	Detail explain
18	5.4 Addressing 5.4.1 Addressing Modes 5.4.2 Immediate Addressing 5.4.3 Direct Addressing 5.4.4 Register Addressing	371-372	1	Detail explain
19	5.4.5 Register Indirect Addressing 5.4.6 Indexed Addressing 5.4.7 Based-Indexed Addressing 5.4.8 Stack Addressing	373-379	2	Detail explain
20	Problems	431-435	1	No. 5,6,7,10,11,12,14,15
21	Tutorial(Chapter 4 and 5)		1	
22	Revision (Chapter 1,3,4,5)		2	